Skip to main content
CONNECTICUT COLLEGE
CONNECTICUT COLLEGE
  • Current Issue
  • Past Issues
    • 2025 Issues
    • 2024 Issues
    • 2023 Issues
    • 2022 Issues
    • 2021 Issues
    • 2020 Issues
    • 2019 Issues
    • 2018 Issues
    • 2017 Issues
    • 2016 Issues
    • 2015 Issues
    • 2014 Issues
  • Older Issues
  • Letters to the Editor
  • Update Your Address
  • Alumni Association
  • News & Media Hub
  • Make a Gift
  • College Home Page

Contact Us

Connecticut College
Office of Communications
270 Mohegan Avenue
New London, CT 06320

Amy Martin
Editor, CC Magazine
asulliva@conncoll.edu
860-439-2526

CC Magazine welcomes your Class Notes submissions. Please include your name, class year, email, and physical address for verification purposes. Please note that CC Magazine reserves the right to edit for space and clarity. Thank you.

Submit Class Notes

The Giraffe Locality

giraffestoryimage

The Giraffe Locality

Global warming may turn Arctic ice caps into tropical lakes. To look into the future, Professor Peter Siver turns to clues from the past.

By Amy Martin

P

eter Siver doesn’t much care for diamonds. 

The botany professor is far more interested in microscopic algae—diatoms and chrysophytes—that live in lakes, oceans and other waterways. 

But sometimes, diamonds are a researcher’s best friend. And near the Arctic Circle, sometimes the search for these precious stones uncovers the remains of an undiscovered ancient lake. 

In the late 1990s, BHP Billiton, an Australian-based mining company, was drilling for diamonds in one of the northernmost regions of Canada’s Northwest Territories. The company was digging 400 feet into the tundra in search of kimberlite pipes, vertical cylinders in the Earth’s crust that can push the rocks that sometimes contain diamonds from deep within the mantle to the earth’s surface. 

BHP was extracting sample cores of sediment from what was once a large crater, likely produced by the violent volcanic eruption that occurs when the highly molten material from which diamonds are formed moves up in the kimberlite cylinder. 

Where there are kimberlites, there are often diamonds, so “if the sample didn’t contain enough diamonds to warrant mining, they’d just dump it,” says Siver, the Charles and Sarah P. Becker ’27 Professor of Botany and director of the Environmental Studies Program at Connecticut College. 

One castaway core didn’t contain diamonds. However, the remains of an ancient lake that had once filled the crater were ever-present. To Siver, a sample like this is pure gold, because by analyzing the billions of microfossils left behind, he can piece together the past and help predict the future of our polar ice caps.  

A sliver of this dirt can hold thousands of tiny algae fossils, including diatoms and chrysophytes. By studying the remains of these microbes, each of which thrive under different circumstances, Siver can reconstruct the evolution of the lake and of the organisms themselves. 

In 2005, Siver began working on one of the BHP Billiton cores with Alexander Wolfe, a professor of paleobiology at the University of Alberta. They dubbed the sample site the “Giraffe locality” and determined the lake had formed 48 million years ago, in the middle Eocene “hothouse” period. It lasted for thousands of years before slowly turning into a marsh, then a bog, then forested land and finally the frozen tundra it is today.

The fossils in the sample are fantastically preserved—a treasure trove of scientific information. But collecting all that information isn’t easy. The whole core sample stretches the length of 1.63 football fields; chrysophytes and diatoms can’t be seen by the naked eye. 

“It’s like looking for a needle in the ocean,” Siver says. 

To conduct the research, Siver and Wolfe secured two grants from the National Science Foundation totaling more than $675,000. Over the past 12 years, they’ve led a growing team of scientists on a mission to find out just what this ancient lake can tell us about climate change and global warming.

UNDER THE MICROSCOPE

Siver is a scientist, but he’s also a detective of sorts. He looks for clues, collects evidence. No detail is too small.

He’s one of the best in the world at what he does: Siver is the author of more than 140 peer-reviewed articles, four books and two edited volumes. He has discovered more than 80 new species of chrysophytes and diatoms, and even several new genera. He has also developed innovative ways of working with light and electron microscopes to reveal new details about the smallest of organisms. 

Sometimes, even real detectives seek him out. Siver has helped solve murder cases by analyzing the diatoms in mud samples found on shoes to determine the source of the mud. One such case was the basis of an episode of Forensic Files. 

In the arctic, though, what he found was tropical. 

Looking at the samples under an electron microscope, Siver found chrysophytes species that today inhabit wetlands, small lakes and ponds. He also found warm-water sponges and tropical diatoms, including several species from the genus Actinella, whose closest modern relatives are found in Australia. Finding any diatoms at all was a surprise, since they had only started to invade freshwater bodies at the time the lake was formed. 

“It might be one of the earliest freshwater diatom sites on the planet,” Siver says. 

It was all proof that this area of northern Canada had once been warm. 

But how warm?  

ARCTIC PALM TREES

As Siver set to work identifying and describing more of the organisms, a microscopic mystery emerged.

Again and again, he came across a round object covered with spikes. In his notes, he referred to the object as a Christmas ornament, since it reminded him of a decoration that might hang from the tree. 

He found thousands of them, sometimes in a near-perfect line. He had no idea what they were. 

Then, by chance, he happened upon a tiny picture of the same spiky ball in a Nature article about the evolution of herbivores and the spread of grasslands. The caption identified it as a phytolith, or silicified particle of plant tissue. From a palm tree. 

“Palm trees in the arctic,” Siver says. “Imagine that. It’s fantastic evidence that there couldn’t have been any ice” when the lake thrived. 

To get an even better understanding of the climate, Siver and Wolfe enlisted a bigger group of researchers on a study to determine the area’s average temperature, annual precipitation and atmospheric levels of carbon dioxide. The results were recently accepted for publication in Geology, a top scientific journal.

Using fossilized pollen, the scientists calculated that the area was more than 17 degrees Celsius (or approximately 30 degrees Fahrenheit) warmer than it is today, and significantly wetter. 

The modern-day climate equivalent: Nashville, Tennessee. 

“Amazingly, that’s also right about where palm trees stop growing,” says Siver.

These remains hold the key to what the future could look like and what could happen.

'A COUPLE HUNDRED YEARS'

The arctic was hot before, and it will be again. It won’t take millions of years. It won’t even take thousands. 

One of the best predictors for global warming is atmospheric CO2. The current level of this greenhouse gas, according to the National Oceanic and Atmospheric Administration, is about 405 parts per million, and rising at an unprecedented rate.

According to Siver’s team of scientists, at the time the Giraffe locality was a thriving lake, the mean atmospheric CO2 was 594 parts per million. 

We’re already two-thirds of the way there. And because the earth warms at the poles, when that level is reached, the arctic temperature will rise quickly, the ice caps will melt and the landscape may look much like it did 48 million years ago. 

“Most estimates show us reaching those levels again in less than a couple hundred years,” Siver says. 

One scenario by the National Center for Atmospheric Research, for example, predicts the arctic could warm by as much as 7 degrees Celsius by the year 2100. 

That’s bad news for polar bears. 

As the ice melts, many cold-climate species will likely change or become extinct, Siver says. But others will evolve and adapt to the new climate, and warmth-loving organisms are also likely to migrate north.

The microorganisms that thrived in the arctic lake provide some interesting evolutionary clues. Many of the now-extinct species of chrysophytes and diatoms Siver found were larger than their modern-day relatives. The smaller ones, it seems, were able to better adapt and flourish in new habitats. 

And while Siver can’t be sure from his samples what larger species of animals and plants were present, he’s confident they were there. 

“We can tell with some certainty that the ecosystem was thriving. The microscopic components were all there,” he says. 

Siver, Wolfe and their research teams, including student researchers and Siver’s longtime laboratory manager and research assistant Anne-Marie Lizarralde, continue to analyze the Giraffe sample and make new discoveries. They have already published more than 30 journal articles about their findings; more are planned. 

They are also working on three new samples: “Wombat,” a 60-million-year-old site a few miles away from the Giraffe locality; “Horsefly,” a 45-million-year-old site in British Columbia; and a younger site in Nevada’s Virgin Valley. 

The research will take years, but the comparative data will help Siver add even more pieces to the climate change puzzle. 

“These remains hold the key to what the future could look like and what could happen,” he says. “It already happened.” 

giraffe2.jpg
Above: A graveyard of chrysophytes on the surface of a fractured piece of mudstone from the Giraffe locality core (Peter Siver). Cover photo: A kimberlite field in Canada’s Northwest Territories (Jason Pineau/Getty Images).


  • Make a Gift
  • Contact Us
  • Alumni Association
  • News & Media Hub
  • Update Your Address